六角形の辺の長さを計算する方法

Posted on
著者: Monica Porter
作成日: 20 行進 2021
更新日: 19 11月 2024
Anonim
【高校 数学Ⅰ】 三角比6 長さを求める1 (11分)
ビデオ: 【高校 数学Ⅰ】 三角比6 長さを求める1 (11分)

コンテンツ

六角形は、6つの内角を持つ6辺の多角形です。このポリゴン内の角度の合計は720度で、それぞれの内角は120度です。この形状は、機械部品を締め付けるために使用されるハニカムおよびナットに見られます。六角形の辺の長さを計算するには、六角形内で三角形を形成する脚の少なくとも1つの長さの値が必要です。六角形のすべての辺の長さは等しいため、六角形の1辺の長さを見つけるだけで、すべての辺の長さを知ることができます。

六角形を描く

    紙に六角形を描きます。定規を使用して、すべての辺の長さが等しくなるようにします。

    六角形内の各角度に120度のラベルを付けます。六角形の内角の合計は720度です。

    六角形内に4つの三角形を形成するために、左上の軸から3つの反対の軸に線を引きます。

    左端の三角形の小さい方の各角度に30度のラベルを付けます。左端の三角形は二等辺三角形であるため、2つの辺の長さは等しく、2つの小さい角度の角度は等しくなります。大きな角度は120度であるため、残りの2つの角度は等しく、合計60度でなければなりません。つまり、各角度は30度でなければなりません。

    左から2番目の三角形内の最小角度に30度のラベルを付けます。元の軸点から4つの三角形を作成する上の4つの角度は、すべて30度で等しくなければなりません。

    左から2番目の三角形の左下の角度に90度のラベルを付けます。相補的な角度は30度なので、各内部六角形の角度は120度であるため、この角度は90度でなければなりません。

    左から2番目の三角形内の3番目の角度に60度のラベルを付けます。三角形は180度に等しく、他の2つの角度は30度と90度であるため、最終角度は60度でなければなりません。これで、30-60-90の直角三角形ができました。

    30-60-90の直角三角形内で、30度の角度の反対側にある六角形の辺の長さが斜辺の長さの半分、または90度の角度の反対側に等しいことに注意してください。したがって、斜辺の長さが8インチの場合、六角形の辺の長さは4インチです。

    また、六角形の辺の長さ、または30度の角度の反対側は、60度の角度の反対側の長さを3の平方根で割った商に等しいことに注意してください。 60度の角度は17.5センチメートルで、六角形の辺の長さは、その数を3の平方根で割った値、つまり約10センチメートルです。

辺の長さの計算

    持っている値を六角形に差し込みます。六角形の辺の長さを計算するには、少なくとも1つの値が必要です。値は、六角形内の三角形のいずれかを完成させる線の長さです。

    指定した値が六角形の左端または右端の二等辺三角形を完成させる線の長さである場合、値を3の平方根で除算します。商は六角形の辺の長さです。値が7の場合、六角形の一辺の長さは8を3の平方根で割ったもので、約4.074です。

    指定した値が六角形内の中央の2つの三角形を作成する中心線の長さである場合、値を2で除算します。商は六角形の辺の長さです。この値が8の場合、六角形の1辺の長さは8を2で割って4になります。

    ヒント