半径を使用して円の面積を見つける方法

Posted on
著者: Monica Porter
作成日: 16 行進 2021
更新日: 19 11月 2024
Anonim
6年算数 円の面積【なぜ、半径×半径×円周率になるのか、解説します!】
ビデオ: 6年算数 円の面積【なぜ、半径×半径×円周率になるのか、解説します!】

コンテンツ

円の面積を見つけるには、半径の2乗のpi倍、またはA = pi r ^ 2を取ります。この式を使用すると、半径(または直径)がわかっている場合、値を差し込んでAを解くことで円の面積を見つけることができます。Piは3.14として近似されます。

整数

半径を指定して円の面積を見つけるには、 半径の値を式A = pi r ^ 2に差し込みます。これを行うには、まず半径を2乗してから、結果にpiを掛けます。円の半径が2の場合、rの代わりに2を使用して数式を書きます:A = pi(2)^ 2。 2を2乗すると、数式はA = pi(4)になります。電卓のpiボタンを使用する場合、答えはA = 12.57で、100分の1の位に丸められます。 piに近似値3.14を使用すると、答えはA = 12.56になります。

小数

プロセスは同じです 半径がどんなに複雑に見えても関係ありません。半径が5.68412であっても、その数値を数式に代入して、平方することができます。数式は、A = pi(32.30922017)になります。特に指示がない限り、piを掛けるまで答えを丸めないでください。電卓画面にすべてを残し、パイを掛けてから丸めます。 piボタンを使用する場合、答えは101.50になり、最も近い100分の1に丸められます。近似値3.14を使用する場合、答えは101.45になります。

直径

たとえあなたが円の直径を与えたとしても、 それでも半径を使用して円の面積を見つけることができます。半径は直径の半分なので、半径を取得するには、直径を2で割り、結果をプラグインして解決します。直径が16の場合、半径は8です。8を取得して64を取得し、piを乗算します。A= pi x64。これにより、面積は201.06になります。

分数

直径がどんなものであっても、 半径を見つけるために直径を半分に分割します。直径が5/9などの分数の場合、分数のプロパティを使用して、2で割り切れる分子で直径を記述し、次に除算します。割合5/9は10/18になり、半径は5/18になります。分数の上部と下部を二乗して、25/324を得るために5/18を平方します。数式はA = pi(25/324)になります。簡略化すると、答えはA = 0.24、四捨五入です。